Year 1 - 6 # Calculation Policy Multiplication and Division #MathsEveryoneCan ## **Notes and Guidance** ### White Rose Maths # **Calculation Policy** Welcome to the White Rose Maths Calculation Policy. This document is broken down into addition and subtraction, and multiplication and division. At the start of each policy, there is an overview of the different models and images that can support the teaching of different concepts. These provide explanations of the benefits of using the models and show the links between different operations. Each operation is then broken down into skills and each skill has a dedicated page showing the different models and images that could be used to effectively teach that concept. There is an overview of skills linked to year groups to support consistency through out school. A glossary of terms is provided at the end of the calculation policy to support understanding of the key language used to teach the four operations. ## **Bar Model** # **Benefits** Children can use the single bar model to represent multiplication as repeated addition. They could use counters, cubes or dots within the bar model to support calculation before moving on to placing digits into the bar model to represent the multiplication. Division can be represented by showing the total of the bar model and then dividing the bar model into equal groups. It is important when solving word problems that the bar model represents the problem. Sometimes, children may look at scaling problems. In this case, more than one bar model is useful to represent this type of problem, e.g. There are 3 girls in a group. There are 5 times more boys than girls. How many boys are there? The multiple bar model provides an opportunity to compare the groups. # **Number Shapes** $$5 \times 4 = 20$$ $$4 \times 5 = 20$$ $$5 \times 4 = 20$$ $$4 \times 5 = 20$$ $$18 \div 3 = 6$$ # Benefits Number shapes support children's understanding of multiplication as repeated addition. Children can build multiplications in a row using the number shapes. When using odd numbers, encourage children to interlock the shapes so there are no gaps in the row. They can then use the tens number shapes along with other necessary shapes over the top of the row to check the total. Using the number shapes in multiplication can support children in discovering patterns of multiplication e.g. odd \times odd = even, odd \times even = odd, even \times even = even. When dividing, number shapes support children's understanding of division as grouping. Children make the number they are dividing and then place the number shape they are dividing by over the top of the number to find how many groups of the number there are altogether e.g. There are 6 groups of 3 in 18. # **Bead Strings** $$5 \times 3 = 15$$ $3 \times 5 = 15$ $$15 \div 3 = 5$$ $$5 \times 3 = 15$$ $$15 \div 5 = 3$$ $$3 \times 5 = 15$$ $$4 \times 5 = 20$$ $$20 \div 4 = 5$$ $$5 \times 4 = 20$$ # **Benefits** Bead strings to 100 can support children in their understanding of multiplication as repeated addition. Children can build the multiplication using the beads. The colour of beads supports children in seeing how many groups of 10 they have, to calculate the total more efficiently. Encourage children to count in multiples as they build the number e.g. 4, 8, 12, 16, 20. Children can also use the bead string to count forwards and backwards in multiples, moving the beads as they count. When dividing, children build the number they are dividing and then group the beads into the number they are dividing by e.g. 20 divided by 4 – Make 20 and then group the beads into groups of four. Count how many groups you have made to find the answer. ## **Number Tracks** $$6 \times 3 = 18$$ $$3 \times 6 = 18$$ $$18 \div 3 = 6$$ # **Benefits** Number tracks are useful to support children to count in multiples, forwards and backwards. Moving counters or cubes along the number track can support children to keep track of their counting. Translucent counters help children to see the number they have landed on whilst counting. When multiplying, children place their counter on 0 to start and then count on to find the product of the numbers. When dividing, children place their counter on the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0. Children record how many jumps they have made to find the answer to the division. Number tracks can be useful with smaller multiples but when reaching larger numbers they can become less efficient. # Number Lines (labelled) $$4 \times 5 = 20$$ $$5 \times 4 = 20$$ $$20 \div 4 = 5$$ # Benefits Labelled number lines are useful to support children to count in multiples, forwards and backwards as well as calculating single-digit multiplications. When multiplying, children start at 0 and then count on to find the product of the numbers. When dividing, start at the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0. Children record how many jumps they have made to find the answer to the division. Labelled number lines can be useful with smaller multiples, however they become inefficient as numbers become larger due to the required size of the number line. # Number Lines (blank) A red car travels 3 miles. A blue car 4 times further. How far does the blue car travel? A blue car travels 12 miles. A red car 4 times less. How far does the red car travel? # **Benefits** Children can use blank number lines to represent scaling as multiplication or division. Blank number lines with intervals can support children to represent scaling accurately. Children can label intervals with multiples to calculate scaling problems. Blank number lines without intervals can also be used for children to represent scaling. # Base 10/Dienes (multiplication) 72 1 # Benefits Using Base 10 or Dienes is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written representations match. As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed. Base 10 also supports the area model of multiplication well. Children use the equipment to build the number in a rectangular shape which they then find the area of by calculating the total value of the pieces This area model can be linked to the grid method or the formal column method of multiplying 2-digits by 2-digits. # **Base 10/Dienes (division)** $$68 \div 2 = 34$$ | Tens | Ones | |------|------| | | | | | | | | | $$72 \div 3 = 24$$ # **Benefits** Using Base 10 or Dienes is an effective way to support children's understanding of division. When numbers become larger, it can be an effective way to move children from representing numbers as ones towards representing them as tens and ones in order to divide. Children can then share the Base 10/ Dienes between different groups e.g. by drawing circles or by rows on a place value grid. When they are sharing, children start with the larger place value and work from left to right. If there are any left in a column, they exchange e.g. one ten for ten ones. When recording, encourage children to use the part-whole model so they can consider how the number has been partitioned in order to divide. This will support them with mental methods. # Place Value Counters (multiplication) $$\begin{array}{r} 34 \\ \times 5 \\ \hline 170 \\ \hline 1 2 \end{array}$$ # Benefits Using place value counters is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written match. As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of # Place Value Counters (division) # Benefits Using place value counters is an effective way to support children's understanding of division. When working with smaller numbers, children can use place value counters to share between groups. They start by sharing the larger place value column and work from left to right. If there are any counters left over once they have been shared, they exchange the counter e.g. exchange one ten for ten ones. This method can be linked to the part-whole model to support children to show their thinking. Place value counters also support children's understanding of short division by grouping the counters rather than sharing them. Children work from left to right through the place value columns and group the counters in the number they are dividing by. If there are any counters left over after they have been grouped, they exchange the counter e.g. exchange one hundred for ten tens. # **Times Tables** | Skill | Year | Representations and models | | | |------------------------|------|----------------------------|------------------|--| | Recall and use | 2 | Bar model | Ten frames | | | multiplication and | | Number shapes | Bead strings | | | division facts for the | | Counters | Number lines | | | 2-times table | | Money | Everyday objects | | | Recall and use | 2 | Bar model | Ten frames | | | multiplication and | | Number shapes | Bead strings | | | division facts for the | | Counters | Number lines | | | 5-times table | | Money | Everyday objects | | | Recall and use | 2 | Hundred square | Ten frames | | | multiplication and | | Number shapes | Bead strings | | | division facts for the | | Counters | Number lines | | | 10-times table | | Money | Base 10 | | | Skill | Year | Representation | ns and models | | |---|---|--|---|--| | Recall and use
multiplication and
division facts for the
3-times table | and 3 Hundred square Number shapes Counters | | Bead strings
Number lines
Everyday objects | | | Recall and use
multiplication and
division facts for the
4-times table | 3 | Hundred square Bead strings Number shapes Number lines Counters Everyday objects | | | | Recall and use
multiplication and
division facts for the
8-times table | 3 | Hundred square
Number shapes | Bead strings
Number tracks
Everyday objects | | | Recall and use
multiplication and
division facts for the
6-times table | 4 | Hundred square
Number shapes | Bead strings
Number tracks
Everyday objects | | | Skill | Year | Representations and models | | | |--|------|---------------------------------|--------------------------------------|--| | Recall and use multiplication and division facts for the 7-times table | 4 | Hundred square
Number shapes | Bead strings
Number lines | | | Recall and use
multiplication and
division facts for the
9-times table | 4 | Hundred square
Number shapes | Bead strings
Number lines | | | Recall and use
multiplication and
division facts for the
11-times table | 4 | Hundred square
Base 10 | Place value counters
Number lines | | | Recall and use
multiplication and
division facts for the
12-times table | 4 | Hundred square
Base 10 | Place value counters
Number lines | | # Skill: 10 times table **999999999**0000000000000 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |----|----|----|----|----|----|----|----|----|----| | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | | | | | | | | | | | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 95 | 96 | 97 98 99 ## Year: 2 Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the ten times table, using concrete manipulatives to support. Notice the pattern in the digitsthe ones are always 0, and the tens increase by 1 ten each time. | 8 | 16 | 24 | 32 | 40 | |----|----|----|----|----| | 48 | 56 | 64 | 72 | 80 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |----|----|----|----|----|-----------|----|----|----|-----| | 11 | 12 | 13 | 14 | 15 | <u>16</u> | 17 | 18 | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | 51 | 52 | 53 | 54 | 55 | <u>56</u> | 57 | 58 | 59 | 60 | | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | | | | | | | | | | | | Year: 3 | 6 | 12 | 18 | 24 | 30 | |----|----|----|----|----| | 36 | 42 | 48 | 54 | 60 | | 66 | 72 | 78 | 84 | 90 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |----|----|----|----|----|----|----|----|----|-----| | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | ## Year: 4 Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support. ## Skill: 9 times table | 9 | 18 | 27 | 36 | 45 | |----|----|----|----|----| | 54 | 63 | 72 | 81 | 90 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |----|----|----|----|----|----|------|------------------|----|-----| | 11 | 12 | 13 | 14 | 15 | 16 | 17 | (8) | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | (Z7) | 28 | 29 | 30 | | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 9 | 100 | ## Year: 4 Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples. ## Skill: 7 times table | 7 | 14 | 21 | 28 | 35 | |----|----|----|----|----| | 42 | 49 | 56 | 63 | 70 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |----|----|-----------|----|----|-----------|----|----|----|-----| | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | | 51 | 52 | 53 | 54 | 55 | <u>56</u> | 57 | 58 | 59 | 60 | | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | ## Year: 4 Encourage daily counting in multiples both forwards and backwards, supported by a number line or a hundred square. The seven times table can be trickier to learn due to the lack of obvious pattern in the numbers, however they already know several facts due to commutativity. Children can still see the odd, even pattern in the multiples using number shapes to support. #### Skill: 12 times table Year: 4 Encourage daily counting in multiples, (12) supported by a 23 24 number line or a hundred square. 49 50 Look for patterns in 52 | 53 the 12 times table, using manipulatives to support. Make links 82 | 83 to the 6 times table, 92 | 93 | 99 100 seeing how each multiple is double the sixes. Notice the pattern in the ones within each group of five multiples. The hundred square can support in 96 108 120 132 144 highlighting this pattern. # Multiplication | Skill | Year | Representation | ons and models | |---|------|--|---| | Solve one-step problems with multiplication | 1/2 | Bar model
Number shapes
Counters | Ten frames
Bead strings
Number lines | | Multiply 2-digit by 1-
digit numbers | 3/4 | Place value counters
Base 10 | Expanded written method
Short written method | | Multiply 3-digit by 1-
digit numbers | 4 | Place value counters
Base 10 | Short written method | | Multiply 4-digit by 1-
digit numbers | 5 | Place value counters | Short written method | | Skill | Year | Representation | ns and models | |---|------|---------------------------------|-------------------------------------| | Multiply 2-digit by 2-
digit numbers | 5 | Place value counters
Base 10 | Short written method
Grid method | | Multiply 2-digit by 3-
digit numbers | 5 | Place value counters | Short written method
Grid method | | Multiply 2-digit by 4-
digit numbers | 5/6 | Formal written method | | ## Skill: Solve 1-step problems using multiplication One bag holds 5 apples. How many apples do 4 bags hold? $$4 \times 5 = 20$$ $$5 \times 4 = 20$$ **Year: 1/2** Children represent multiplication as repeated addition in many different ways. In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record multiplication formally. In Year 2, children are introduced to the multiplication symbol. ## Skill: Multiply 2-digit numbers by 1-digit numbers | Hundreds | Tens | Ones | |----------|------|------| | | | | | | | | | | | | | / | | | | | | | | | | | | | н | Т | 0 | | | |---|---|---|---|------|------| | | | 3 | 4 | | | | × | | | 5 | | | | | | 2 | 0 | (5 | × 4) | | + | 1 | 5 | 0 | (5 × | (30) | | | 1 | 7 | 0 | | | $$34 \times 5 = 170$$ | | Н | T | 0 | | |---|---|---|---|--| | | | 3 | 4 | | | × | | | 5 | | | | 1 | 7 | 0 | | | | 1 | 2 | | | | Hundreds | Tens | Ones | |----------|------|------| | | 000 | 0000 | | | 000 | 0000 | | | 000 | 0000 | | | 000 | 0000 | | | 000 | 0000 | | 0 | 20_ | | ## **Year: 3/4** Informal methods and the expanded method are used in Year 3 before moving on to the short multiplication method in Year 4. Place value counters should be used to support the understanding of the method rather than supporting the multiplication, as children should use times table knowledge. ## **Skill: Multiply 3-digit numbers by 1-digit numbers** | | 1 | 2 | | |---|---|---|---| | | 9 | 8 | 0 | | × | | | 4 | | | 2 | 4 | 5 | | | Н | T | 0 | $245 \times 4 = 980$ | Hundreds | Tens | Ones | |----------|----------|-------| | 100 100 | 0000 | 00000 | | 100 100 | 10 10 10 | 00000 | | 100 100 | 0000 | 00000 | | 100 100 | 00000 | 00000 | | 100 | 10 10 | | ## Year: 4 When moving to 3digit by 1-digit multiplication, encourage children to move towards the short, formal written method. Base 10 and place value counters continue to support the understanding of the written method. Limit the number of exchanges needed in the questions and move children away from resources when multiplying larger numbers. ## Skill: Multiply 4-digit numbers by 1-digit numbers $$1,826 \times 3 = 5,478$$ | | Th | Н | Т | 0 | |---|----|---|---|---| | | 1 | 8 | 2 | 6 | | × | | | | 3 | | | 5 | 4 | 7 | 8 | | | 2 | | 1 | | ## Year: 5 When multiplying 4digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method. ## Skill: Multiply 2-digit numbers by 2-digit numbers | 10 10 | 1 | |------------|-------| | 10 100 100 | 10 10 | | 10 100 100 | 10 10 | | 10 100 100 | 10 10 | | 1 10 10 | 1 1 | | | | | × | 20 | 2 | |----|-----|----| | 30 | 600 | 60 | | 1 | 20 | 2 | | ı | | | | | |------|---|---|---|---| | 1 | | | 2 | 2 | | $\ $ | × | | 3 | 1 | | | | | 2 | 2 | | | | 6 | 6 | 0 | | | | 6 | 8 | 2 | | | | | | | Н ## Year: 5 When multiplying a multi-digit number by 2-digits, use the area model to help children understand the size of the numbers they are using. This links to finding the area of a rectangle by finding the space covered by the Base 10. The grid method matches the area model as an initial written method before moving on to the formal written multiplication method. | 22 | X | 31 | = | 682 | |----|----------|-----------|---|-----| | | \wedge | ЭТ | _ | UOZ | ## Skill: Multiply 3-digit numbers by 2-digit numbers | | 100 100 | 10 10 10 | | |----|---------|-------------|-------------| | 10 | 1,000 | 100 100 100 | 10 10 10 10 | | 10 | 1000 | 100 100 100 | 10 10 10 | | 10 | 1000 | 100 100 100 | 10 10 10 10 | | 1 | 100 100 | 10 10 10 | | | 1 | 100 100 | 10 10 10 | 1111 | | Th | Н | Т | 0 | |-----|----|---|---| | | 2 | 3 | 4 | | × | | 3 | 2 | | | 4 | 6 | 8 | | 1 7 | 10 | 2 | 0 | | 7 | 4 | 8 | 8 | | × | 200 | 30 | 4 | |----|-------|-----|-----| | 30 | 6,000 | 900 | 120 | | 2 | 400 | 60 | 8 | Year: 5 Children can continue to use the area model when multiplying 3-digits by 2-digits. Place value counters become more efficient to use but Base 10 can be used to highlight the size of numbers. Children should now move towards the formal written method, seeing the links with the grid method. $234 \times 32 = 7,488$ | Skill: Multiply 4-digit numbers by 2-digit numbers | |--| |--| | TTh | Th | Н | Т | 0 | |----------|----|----------|--------|---| | | 2 | 7 | 3 | 9 | | × | | | 2 | 8 | | 2 | 1 | 9 | 1
7 | 2 | | 5 | 4 | 7 | 8 | 0 | | 7 | 6 | 6 | 9 | 2 | 1 $2,739 \times 28 = 76,692$ Year: 5/6 When multiplying 4-digits by 2-digits, children should be confident in using the formal written method. If they are still struggling with times tables, provide multiplication grids to support when they are focusing on the use of the method. Consider where exchanged digits are placed and make sure this is consistent. ## **Division** | Skill | Year | Representations and models | | |---|------|--|--| | Solve one-step problems with division (sharing) | 1/2 | Bar model
Real life objects | Arrays
Counters | | Solve one-step
problems with division
(grouping) | 1/2 | Real life objects
Number shapes
Bead strings
Ten frames | Number lines
Arrays
Counters | | Divide 2-digits by 1-
digit (no exchange
sharing) | 3 | Straws
Base 10
Bar model | Place value counters
Part-whole model | | Divide 2-digits by 1-
digit (sharing with
exchange) | 3 | Straws
Base 10
Bar model | Place value counters
Part-whole model | | Skill | Year | Representations and models | | |---|------|----------------------------------|--| | Divide 2-digits by 1-
digit (sharing with
remainders) | 3/4 | Straws
Base 10
Bar model | Place value counters
Part-whole model | | Divide 2-digits by 1-
digit (grouping) | 4/5 | Place value counters
Counters | Place value grid
Written short division | | Divide 3-digits by 1-
digit (sharing with
exchange) | 4 | Base 10
Bar model | Place value counters
Part-whole model | | Divide 3-digits by 1-
digit (grouping) | 4/5 | Place value counters
Counters | Place value grid
Written short division | | Skill | Year | Representations and models | | |--|------|----------------------------------|--| | Divide 4-digits by 1-
digit (grouping) | 5 | Place value counters
Counters | Place value grid
Written short division | | Divide multi-digits by
2-digits (short
division) | 6 | Written short division | List of multiples | | Divide multi-digits by 2-digits (long division) | 6 | Written long division | List of multiples | # Skill: Divide 2-digits by 1-digit (sharing with no exchange) | Tens | Ones | | |------|------|--| | 000 | 000 | | | 000 | 0000 | | $$48 \div 2 = 24$$ Year: 3 When dividing larger numbers, children can use manipulatives that allow them to partition into tens and ones. Base 10 and place value counters can all be used to share numbers into equal groups. Part-whole models can provide children with a clear written method that matches the concrete representation. | Tens | Ones | |----------|-------| | | | | | | | | | | (111111) | • • • | 52 $52 \div 4 = 13$ | 10 10 10 | 000000 | |----------|--------| | Tens | Ones | | 10 | 111 | | 10 | 111 | | 10 | 111 | | 10 | 111 | Year: 3/4 When dividing numbers involving an exchange, children can use Base 10 and place value counters to exchange one ten for ten ones. Children should start with the equipment outside the place value grid before sharing the tens and ones equally between the rows. Flexible partitioning in a part-whole model supports this method. #### Skill: Divide 2-digits by 1-digit (grouping) | Tens | Ones | |-------|------| | 10 10 | | | 10 10 | | | 10 | | | | | | | | | | | $$52 \div 4 = 13$$ When using the short division method, children use grouping. Year: 5 Starting with the largest place value, they group by the divisor. Language is important here. Children should consider 'How many groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?' Remainders can also be seen as they are left ungrouped. #### Skill: Divide 3-digits by 1-digit (sharing) $$844 \div 4 = 211$$ 844 | Н | Т | 0 | |---------|----|---| | 100 100 | 10 | 1 | | 100 100 | 10 | 1 | | 100 100 | 10 | 1 | | 100 100 | 10 | 1 | #### Year: 4 Children can continue to use place value counters to share 3digit numbers into equal groups. Children should start with the equipment outside the place value grid before sharing the hundreds, tens and ones equally between the rows. This method can also help to highlight remainders. Flexible partitioning in a part-whole model supports this method. #### Skill: Divide 3-digits by 1-digit (grouping) Hundreds Tens Ones $856 \div 4 = 214$ #### Year: 5 Children can continue to use grouping to support their understanding of short division when dividing a 3-digit number by a 1-digit number. Place value counters or plain counters can be used on a place value grid to support this understanding. Children can also draw their own counters and group them through a more pictorial method. | | 4 | 2 | 6 | 6 | |---|---|---|----------------|----------------| | 2 | 8 | 5 | ¹ 3 | ¹ 2 | Place value counters or plain counters can be used on a place value grid to support children to divide 4-digits by 1-digit. Children can also draw their own counters and group them through a more pictorial method. Children should be encouraged to move away from the concrete and pictorial when dividing numbers with multiple exchanges. $$8,532 \div 2 = 4,266$$ #### Skill: Divide multi digits by 2-digits (short division) Year: 6 When children begin to divide up to 4digits by 2-digits, 0 3 6 written methods $432 \div 12 = 36$ become the most 12 3 accurate as concrete and pictorial representations become less effective. Children can write out multiples to support their calculations with larger remainders. 0 4 8 9 Children will also $7,335 \div 15 = 489$ 13 13 solve problems with 15 7 remainders where the quotient can be 15 30 75 105 120 135 45 60 90 150 rounded as appropriate. Additional Year 6 examples Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context 6LS17 Step 5: Long division for numbers up to 4 digits - expressing quotients with decimals | Abstract speaking frame | Pictorial - Jottings | Abstract - Written symbolic | |---|---------------------------------------|-----------------------------| | | Jottings: multiples of the
divisor | 0 3 7 .6 | | | 15 | 15 5 6 4 .0 | | | 30 | _ 0 | | | 45 | | | I have a remainder of 9. | 60 | | | I need to regroup the 9 | 75 | - <u>4 5</u> ↓ | | ones into | | 1 1 4 | | 90 tenths. | 90 | - 1 0 5 | | How many groups of 15 tenths are | 105 | 9 0 | | in 90 tenths, without regrouping? | 120 | | | I can make 6 groups of 15 tenths. | 135 | - 9 0 | | There is nothing remaining. There are 37.6 groups of 15 in 564. | 150 | 0 | $564 \div 15 = 37.6$ ### Glossary **Array** – An ordered collection of counters, cubes or other item in rows and columns. **Commutative** – Numbers can be multiplied in any order. **Dividend** – In division, the number that is divided. **Divisor** – In division, the number by which another is divided. **Exchange** – Change a number or expression for another of an equal value. **Factor** – A number that multiplies with another to make a product. **Multiplicand** – In multiplication, a number to be multiplied by another. **Partitioning** – Splitting a number into its component parts. **Product** – The result of multiplying one number by another. **Quotient –** The result of a division **Remainder** – The amount left over after a division when the divisor is not a factor of the dividend. **Scaling** – Enlarging or reducing a number by a given amount, called the scale factor